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On Causal Dynamics Without Metrisation: Part III 

M I C H A E L  COLE 
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Abstract 

A formalisation of heuristic and intuitive ideas about causal dynamical transitions, 
presented in Part II of this series (this volume, pp. 1-22), is given here. A quotient 
structure is found to be necessary for any collection of causal dynamical transitions by 
using arguments employing the Principle of Corporate Agreement. The relevance of the 
first homotopy group (the fundamental group) to 'small scale' phenomena predicted by 
a theory is pointed out, and the fundamental group is seen to play a wide role in defining 
the causality, relational and quotient structures of a theory. 

1. Introduction 

1.1. First Considerations 

Is there too much information in a theory of dynamics that is dependent 
upon the set of all ordered pairs of events that are apprehended by observers ? 
One may fairly ask that question of the approach to dynamics that was 
proposed in Part I I  of  this series. The purpose of this paper is to show that 
considerable simplification of the information problem can be achieved 
through the application of the Principle of Corporate Agreement, also 
proposed in Part II. 

The simplification is not merely a 'first order approximation'  but the 
introduction of equivalence relations, thereby allowing details of informa- 
tion about 'equivalent' events or 'equivalent' dynamical transitions to be 
retained without encumbering the simplified structure. 

Moreover, the simplification is not trivial. The notion of 'language 
equivalence' introduced permits one to convert diagrams (such as Fig. 1 
representing the set of all events detected by all observers together with 
the associated set of ordering operators between the events) into their 
'universal covering diagrams'. This is done by using the notion of a base 
space and its universal covering space. This also means that no simpler 
d iagrams--and therefore no simpler ordering relat ions--may be con- 
structed. Furthermore it means that if an ordering relation formalism is 
used for dynamics, then it can be no simpler, nor yet more informative, 
than this approach. In other words the methods used here may well be more 
correctly described as the (universal) ordering relation formalism for 
causal dynamics, 
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1.2. Outline 

The first section of the paper is devoted to giving a set theoretic description 
of the simple ideas (represented in Fig. 1) concerning sets of events appre- 
hended and ordered by different observers. The notion of an ordering 
operator associated with an ordering relation of a set is more clearly defined 
than in Part II. Language equivalence between sets of ordered observed 
events is defined, and polyadic ordering relations are discussed as a part 
of understanding the construction of an ordering operator from an ordering 
relation. 

The second section is devoted to interpreting the r61e of the notion of 
'fundamental group' (in the sense of the first homotopy group) in a system 
of causal dynamical transitions. It is found that the fundamental group has 
a very considerable part to play in defining the quotient structure that is 
required by the use of the Principle of Corporate Agreement and the notion 
of language equivalence. The fundamental group--via its property of 
factoring out a base space from its universal covering space--is also seen 
to define the dynamical causal ordering relation and dynamical causal 
ordering operator; also it defines the structure of the transitions of the 
unobserved 'internal/microscopic' events described by a theory. The 
fundamental group of the system of dynamical transitions is therefore 
central to all similar consideration of dynamics. Finally, an example of a 
quotient theory language is sketched. 

2. Language Equivalence 

2.1. Introductory Remarks 

In order to consider how the notion of binary ordering relation may be 
extended so as to be usefully employed in considering the non-metrical 
formulation of dynamical theories, we need to combine two points of view. 
The first is the purely formal one developed in this section, and the second 
is the interpretative form of the methodt principally dealt with in Section 3. 
This section deals with formalisation of the notion of deformation of 
ordering operators into one another, which was first introduced in Section 
4.1, Part II, et seq. 

2.2. Ordering Relations and Ordering Operators 

For the purposes of this discussion let us make the following hypotheses: 

HYP(1): There exists a set of observers s = {(9~}, )~ E I c J(+). 

HYP(2): Each observer (9~ records and relates his observations by means of 
a particular set of symbols and notions, called a (h-) theory-language s 
the subscript denoting the correspondence between an observer and a 
theory-language. 

H YP (3) : The aggregate of events observed by the Ath observer, (~ a, constitutes 
a set, denoted by Ua. 

t Using the notion of intermediate events and processes. 
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NTN(1): The elements of Ua are denoted as ua~z~; i.e. 

HYP(4):  The aggregate of all events apprehended by the set of all observers, 
~3 = (CA), constitutes a set U, such that each Ua is a proper subset of  U 
and such that U = U Ua. 

Let us now appeal to common experience (compare Section 3.1, Part II), 
and the well-ordering theorem, and suppose that: 

HYP(5):  The Ath set Ua may be put into a total order with a first element 
min Ua and a last element max Ua; the ordering will be denoted by Ra. 
The pair (Ua, Ra) is called the Ath (individual) trajectory of the set U. 

RMK(1): At this point it must be remarked, as in Section 3.5, Part II, that 
the hypothesis of the well-ordering of individual trajectories, which has 
just been made in HYP(5), does not immediately coincide with the 
everyday experience of each one of us. This is because if each one of us 
were to write a record of our remembered experiences--even of experiences, 
like thoughts, that may have only just occurred--we cannot invariably 
recall the precise order in which some of them actually occurred. We can, 
however, generally say that the set of 'ordering confused' events lies 'after' 
one event and 'before' a 'later' event. We shall present enough ideas here 
to show that for present purposes we need not worry about such awkward 
subsets, the Ua, for it is intended to say that a general theory-language s 
which can relate all the consciously well-ordered subsets of the Ua c U, 
must be compared against the 'ordering confused' subsets of the Ua. If  then 
it is found after repeated experiments by all the 0 a that the common theory- 
language s cannot explain a residue of the 'ordering confused' subsets, 
then it will be apparent that s must be given a richer structure. Since 
[compare Section 3, and Section 3.6, DF(3) in Part II] we define a causal 
dynamical theory to be a one that can well order at least a subset of 
U = Ua Ua in a manner agreeable to all the ~a, it is clear that if the ordering 
used by this theory cannot embrace all the elements of U, then a more 
detailed, or completely new, ordering relation in U must be found, upon 
which all ~0 a can agree. 

CVN(1): If the elements ua(~l e Ua are ordered into a total order by Ra, 
with the integers l e I a belonging to a natural sequence such that, if 
ua~,/= min Ua and ua~ts) = max Ua, then It < 1 ~< If, g l ~ Ia, we shall 
denote the ordering of the uat~ as follows: 

u~(t)Raua(m) "r l<  m 
H YP/NTN(6)." To express the notion of a dynamical transition from event 

u~(~ to event ua(m~, we denote the dynamical ordering operator for the 
~th trajectory as -~a, and write: 

UA(m) = ./~a(ua(/)) ~ l < m 

An inverse operator is defined by means of the expression: 

uatl~ = ~l(Uatm~) ~ l <  m 
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This condensed notation for a dynamical ordering operator, and its 
inverse, on a set of events, results from the following simple considerations. 
Consider a pair of adjacent events, that is to say each is either the immediate 
predecessor or immediate successor of the other. For example, in a more 
elaborate notation than so far used we may write: 

~ U a ( l ) =  R~ (I,I+I)(UA(I+I)) 

Now consider the following simple extension of this notation: 

ua~l+.~ = /~a~ i+ . -1 ,  l+.~. �9 �9 ~(ua(,)) = ~ ( , ,  i+.~(ua(l~) 

u~,_.) = k;'~l_~, 1-.+1>... k~  1~I-~, n(ua(l)) = k~'~l_~, n(ua~n) 
U~(l+p_t/) = / ~ 1  (1+p-q, I+p) k,~(l, '+p)(U.~(I)) = ~ ( l ,  I+p-q)(U,~(l)) 

Consequently all the dynamical ordering operators between the elements 
of Ua form a group if there is also defined an identity operation in the 
fashion: 

Ra(~) -= -RaCl, n =/?X1~I, n if l ~ I a 

and if there is also defined an annihilation operation according to: 

~(a)~.Rh(i,r)=R~l(r,m)R,~(l,m), Vl, meIa, rr 
so that ka(a)(Ua) = 

The group so constructed will be called the ordering operator group. 
On the basis of this argument, we suppose: 

HYP(7): The dynamieal ordering operators ka, k~ 1 [compare HYP(6)], 
are interpreted as appropriate elements of the ordering operator group, 
constructed above, which is denoted as Ra.t 

RMK(2): We have now been able to associate a reasonable mathematical 
meaning to the Ath trajectories (Ua, Ra)--or writing them in a form more 
relevant to dynamics, (Ua, ka). It is not difficult to show that when Ra is 
applied to U, it generates an equivalence class which is none other than the 
Ath trajectory Ua. 

NTN(2): Denote the set of individual trajectories in U by ~' = { Ua:h ~ I c 
J(+)l. i.e. U~ E q/. oo ) ,  

RMK/DF(3): Consequently we may consider that Ra, which operating on 
U, has an assoeiatedprojection operator ~ ,  which projects according 
to the rule; ~a(~ ')  = Ua: this enables us to write U = [..)a ~a(~ 

2.3. Language Equivalence 
Let us return to the theory-language formalisms s associated with the 

observers 0a ~ s and individual trajectories Ua E q/. 

"~For example one can write a |ypical equation l~a(uxa))=ua(m)=i~l(ua(,)), 
l<m<n;l,m, nEl~. 
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HYP(8): To each theory-language s there is associated a mapping 
s : Ua --+ s and s :R~ ---> s ; and we write." 

and s has a law of composition ~ such that s ~ s ~ s 

The Principle of Corporate Agreement [compare Section 3.6, ASSN(10) 
in Part II] requires that, if the set of observers s = {(.0h} is to be able to 
create a study anything like physics, amongst the collection ~ = { U~} of 
individual trajectories there must be some events upon which they can 
agree not only in interpretation, but that there also exists a formal theory- 
language which they all interpret in precisely the same way. That is to say: 

H YP(9): There exists a subset Z c U such that for every zi ~ Z = {zz : i ~ J c 
J~)}, then z~ ~ Uafor all A ~ I, and that there exists a theory-language s 
with associated map s together with [I] mappings ~a:s a --> s where 
[I] is the eardinality of  L such that there holds: 

~(z3 = ~ ~(z3 ,  V i e  J ,  A E I 

Although all the subsets U~ c U are totally ordered, it does not mean 
to say that Z be causally ordered, [compare Section 3.6, DF(3), in part II] 
it is necessary to select a subset from Z according to the construction of 
Section 2.2, DF(2), TH(2), in Part II. For convenience we shall denote this 
causally ordered subset as Z also. The supposition of HYP(9) coupled with 
this redefinition of Z leads one to suppose that there may be a set of events 
upon which less than the whole set of observers may agree, and we may 
express such agreement by the following notion of language equivalence: 

DF(1): Given at least two individual trajectories (U~, Ra), (Uu, Rn), with 
respective theory-languages s s and respective associated mappings 
t~, s s s such that there hold: 

where s s are 'simply connected' subsets of s then the 
dynamical trajectories are said to be s 

This terminology is clearly justifiable, because when the relations above 
hold, one may infer that there exist dynamical ordering operators between 
the elements of U~ and U m and between the elements of Ra and R u, such 
that (Ua, RA) may be smoothly transformed into (U m Ru). From Section 4.6, 
TH(3 and 4) in Part II we may draw the example of G0-equivalence for 
two time-ordered sequences of events, thus showing that the notion of 
s is non-vacuous. As a result we may partition ~ into s 
equivalence classes of dynamical trajectories. 
NTN/DF(3): The set of s classes of the set of trajectories 
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is denoted by qZ, and 1[ is generated by the s relation ~R, 
whence we have: 

RMK/DF(4): Denote the s class of ~', typified by U~, as 
~a  ~ ~;  then one has, 

~ = { ~ ( u )  = u~: s ~ ( u ~ )  ~ s  

which in turn allows one to define another 'projection operator' 
~(a) by the condition; 

~'~ = ~(~') = U~/{u~} 
where (;~) is the subset of ff 6 1 which label the Un ~ qZ which are 
s to U~, also with ;~ 6 (;~), and where {U~} is the singleton 
whose element is the set U~ 6 q/. 

2.4. Polyadic Orderings 

We may now review our approach to this problem and consider those 
events, only, amongst all those belonging to U, that can be encompassed 
by the scheme of relationships so far defined as being consented to by all 
observers in s = {(9~}--that is to say we restrict ourselves to conformity 
with Section 3.6, ASSN(10), DF(3), Part II, the Principle of Corporate 
Agreement and the definition of a causal ordering. From this point we 
may proceed by two stages, the first is to assign a meaningful polyadic 
ordering relation between all elements of U, which is done in this subsection, 
and the second stage is to deduce a quotient structure for the dynamical 
ordering between causally related physical events,t which is done in 
Section 3, following. 

According to the construction of Section 2.2, DF(2), Part II, the set 
Z c U separates the set U into subsets U u with the properties: 

supUu=zs=in fUsk ,  z s~Z ,  i < j < k ,  i , j , k ~ J ~ I a J ( + )  

min Z = inf U,~ = z~, max Z = sup Uca = % 

a < b < ~ i < j < k < ~ e < d ,  a , b , e , d ~ S  

( U u  - {zs}) < {z~} < ( u s ~  - {z~}) 

where A < B means that the set A strictly precedes B in the causal ordering. 
These properties say that the sets U u consist of all possible intermediate 
events--in the sense of the causal ordering--between the events z~ and z s 
such that z, < % Whilst the z~, z s are considered to be the events which 
are actually observed by physicists (ga and are related in a satisfactory way 
by a common theory-language s there is the possibility that a series of 

t 'Physical' in the sense that they result from application of the Principle of Corporate 
Agreement to the set U. 
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refined experiments (designed to detect finer observational detail) could 
reveal a causal sequence of intermediate events, between z~ and z~. that 
could not be related at all in terms of s Therefore, if we wish to use the 
dynamical causal ordering relation/operator in the set Z, consisting of 
commonly experienced and interpreted events, to predict new observations 
on a more detailed scale, it must be able to account for all the possible 
distinct routes from zt to zj consistent with the structure of s that is to 
require that such causal dynamical ordering relations/operators to be 
constructed from the R~ and Ra which refer to the set U u c U. 

RMK/NTN(5):  Denote the groups of ordering operators acting on the 
trajectories in the various Uu by Ra(ij). Then it is clear that over Uu, the 
direct product, 

R(ij) - @~ Ra(ij) 

is also a group of ordering operators, albeit in a somewhat crude sense, 
owing to the many products of elements which are equal to the annihilation 
element. It is also apparent that, in terms of all the sets U u c U, there 
can be defined an ordering operator group which is the direct product of 
all the R(~), namely: 

=- |  

This group, then, contains all the operators that can take one element of 
U into another element by operations which follow trajectories. 

RMK/NTN(6):  Now each z~ is related to another by a group of operators, 
each element of which is an 'extremal' element of an ~(/j); extremal in 
the sense that it connects inf U u with sup U u. Denote this group of extremal 
operators as ~(~/). This denotation, based on the preceding notations 
and discussions, makes it easy to see that if one suppose that a set Uu 
describe the maximum amount of dynamical phenomena the theory- 
language s is capable of inferring as a possible dynamical process leading 
from event/observation zi to event/observation z j, then the s 
classes of U u, typically written ~  ~a, have associated 'extremal' 
products of ordering operators that act as the generators for the group of 
ordering operators which operate upon Z c U; denote these 'extremal' 
products for s classes of U u by 9~O)(/j). [That these elements 
be described as generators of  a larger group is clearly implied by the 
hypothesis that (Uu, R(/j)) contain the maximum possible amount of 
dynamical information describable by s one can then also freely assume 
that z~-~ z i is the smallest observable (i.e. detectable) physical change~ 
in an event z~--because fi(ij) does not explicitly refer to any particular 
set of numbers other than those that can be elicited from a measuring 
apparatus--which assumption requires that the theory-language s then 

I" This possibility, in the case where s is adequate, gives rise to the second viewpoint 
mentioned in Section 2.1 ; namely the introduction of intermediate, virtual dynamical 
processes and states. 

i.e. a change that all observers agree upon. 
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describe large-scale changes by repeated application of the smallest possible 
change; for otherwise s would be inconsistent.~'] The whole group of such 
ordering operators may be denoted as ~, as one would expect owing to the 
partitioning of ~ into s classes ~ E ~/by the s 
relation 91. We can in fact say that 9t induces ~, because we have assumed-- 
as a result of the Principle of Corporate Agreement--that all the trajectories 
converge together whenever they pass through the elements of Z c U. 
This convergence allows us to consider cross-over between s 
trajectories, at an observation (i.e. event in our terminology here), as being 
representable by products of elements of ~: the cross-over operation 
clearly shows that the s structure of ~ is very rich in most 
possibilities. The analogy with projection operators may also be given in 
order to be complete, viz.; 

Therefore the stated aim of this subsection has been accomplished, 
namely the association with a set of elements identified as physical events, of 
a polyadic ordering relation which may be interpreted as a group of 
dynamical transitions between the events. 

RMK(7): This approach has also shown that one may expect definite classes 
of transformations representing inequivalent dynamical processes. Further- 
more, the foregoing discussion has specified no more stringent property of a 
theory-language s other than that it have certain 'simply-connected' regions. 
The results are, therefore, with this exception, completely general. 

3. The Fundamental Group 

3.1. Introductory Remarks 

Here we pursue the notion of s in combination with the 
Principle of Corporate Agreement in order to produce some notions of 
structure in the ordering operator R that make ~, the s 
ordering operator associated with 91, appear like the fundamental group 
of a group of ordering operators having ~, as its universal covering space. 
All the necessary notions are defined as they are needed. This approach 
results from a consideration of a diagram like that of Fig. 1. 

3.2. Non-extremal Products 

So far it has been shown that to the set of events Z, common to all 
observers d~ ~ s and put into the same causal order by each observer (9~, 
there can be adduced a group of ordering operators between the elements 
of Z; furthermore, that the form of this group is governed by the groups 
of ordering operators for individual trajectories which 'converge' upon and 
'diverge' from each z~ e Z. On the basis of the Principle of Corporate 

~ This argument is reminiscent of the quantum mechanical idea of a transition between 
two states being contributed to by all possible transition processes. 
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Agreement the set Z is called the set of physical events in U, and in a natural 
way the theory-language s is called the physical theory. But it is not correct 
to call the ordering operators of the group R the 'physical' ordering 
operators, because 1~ includes all the ordering relation structure between 
the 'non-physical' events in U-Z. The physical ordering operators are 
those which produce transitions between events upon which all observers 
agree regardless of the intermediate process (i.e. a route from one physical 
event to another physical event). This requirement is expressed and met by 
considering a quotient structure in ~. To make this explicit consider the 
following definition using notations already defined: 
DF(2): Given an ordered set of events (U,~) with trajectories Ua ~ q/ 

and a causally ordered set of events Z = Aa Ua, then a non-extremal 
product of ordering operators is typically a product of the ordering 
operators between elements of (Ua Ui~tzl) - {zl} U {zj} (where U,.ta l 
is the subset of U such that zz = inf U,.ta ~ for all ),, and zj = sup UuEa~ 
for all ;~), together with products of ordering operators which may 
take a trajectoly up to one of zl, z j, but not both. 

HYP(IO): The physical ordering operators are the elements of the group of 
all ordering operators modulo the group of non-extremal products. The 

group of physical ordering operators will be denoted as R, the tilde 
indicating the quotient structure. 

RMK(8): The elements of R may be interpreted as transitions between 
physical, observed events without any intermediate events being involved 
in the transition, and yet the transition is still dependent upon the transitions 
between intermediate events that are allowable in terms of the theory- 
language s This latter property is manifested by the existence of s 
equivalence classes of products of elements of R. (An example drawn from 
the recent work of Haag and Kastler will be sketched in Section 3.6.) 

NTN/RMK(4): One can easily see that the non-extremal products of 
ordering operators (for the individual trajectories) between two adjacent 
elements of Z--being adjacent in the sense of the causal ordering which Z 
defines--form proper subgroups, e.g. of Rijt~l. Let us denote such depleted 
forms of Rtjtal by 'R'ijta~ each apostrophe signifying the necessary omissions 
at the 'front' and 'rear' of non-extremal products. We may consequently 
write: 

Consequently, the physically intersecting group of ordering operators is, 

Ri~ = R ~ j / ' R ' i j  (3.2. I) 
RMK(9): There arises, here, the difficulty that 'R'~j is not a normal sub- 
group of R~j because of the way in which we have defined the groups of 
ordering operators associated with the trajectories of observers. As a 

result, we cannot properly consider R~j, as it is defined above in equation 
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(3.2.1), as a quotient group.~ We need some adjustment of argument to 

overcome this difficulty: a difficulty introduced more by the naivety o f  the 
approach  than by any inherent weakness. We proceed by making the 
following hypothesis which is a variant, or derivative of  HYP(10);  

HYP((IO)): For any particular theory of causal dynamical processes, any 
transformation which is represented by non-extremal products of 
ordering operators is unobservable, in the sense that it produces no 
physical~ transformation between events. 

Let us denote by R(z) the set of  transformations between the elements of  
the set Z o f  physical events, and let us denote all the other t ransformations 
as [~(v-z): the notat ion is obvious. The ineffectiveness of  R(v-z) upon  
R(z) is expressed by the relations: 

- ~(z) o r~  o ~ ( m  _ ~ ~ (~(z) ~ ~(l)~ ] For  ~ ) )  e R(z), (R(v_z) o R(z)) ~-(v-z)  - , ( z ) J -  --(v-z) ~ ~--(z) ~ ~,(z)J 

( / ~  o [~(v-z)) o (g~(l) o ~ ~ _ (~(2) ~ ~(I)~ ~, ~ j i = 1,2 ~--(z) "-w-z)] - k~x(z) ~ l-(z)] ~ R(v-z) 

o(l) is defined, then These equations state that provided the product  P,~zZ{ o --(z) 
any unobservable intermediate transition between the transitions o o )  ~(Z) 
and RI~ ~ can be accounted for by means of  another unobservable transition 
either before or after the compounded  effect o r o(~) and 0(2)  17 x ~(Z) ~(Z)" II 

In this way, it is seen that  R~ is required to be considered as a normal  
subgroup of  R~j, and hence allowing ~ to exist between any pair  o f  
elements z~, z~ ~ Z. By extension of  the argument,  we can associate a group 
'R ' ,  with the whole set U, that  is normal. Consequently for the set U of  
all observed events, having the group ~ of  ordering operators, we have: 

HYP/DF(IO): The group of  causal physical ordering operators is defined 
a s  a - ~/'f~'. 

3.3. Physical Theory Languages 

N o w  let us consider these matters in terms of  the c o m m o n  theory- 
language s Any  element o f  R(z) which is either left- or r ight-compounded 
with an element of  R(v-z) becomes an element of  [~(v-z). That  is to say 
in general terms we may write: 

RMK/ASSN(IO): If we assume--as  is natural to do, if we want to use 

t This is in the usual (and normal) sense of multiplying cosets after the style 
(HAI)(HAj) = H(AiA~) where H c  G is a normal subgroup of G and A~, Aj E G but 
A,  Aj r  In fact, in this case the 'coset multiplication' composition is not faithful. 

Physical in the sense of satisfying the Principle of Corporate Agreement. 
�82 This is, of course, an assumption that is made explicitly to be able to consider/~w-z) 

as a normal subgroup. It may on occasions be invalid. But see Section 3.4. 
3 
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elements of  s in correspondence with elements of R i ' - - tha t  we can perform 
a factorisation process in s as follows: 

~(R~z~ o Rcu-z~) = ~ (R~)  [] ~(R~u-~) ~ ~ ( a ~ - ~ )  

~(ac~-~ o ~ )  = ~(R~_~) [] ~ ( ~ )  ~ ~ ( ~ _ ~ )  

where [] is a law of composition in s as required, then it is easy to see that 
s is a two-sided ideal in s 

NTN/DF(5): The two-sided ideal s ) will be denoted as $ - s 

RMK/HP Y(l l ) :  In view of Section 3.2 preceding, it is justifiable to identify 
s  = $. 

Consequently, the theory-language which is of physical interest is s 
I f  we make the natural assumption that s has a part  which is faithfully 
realised by R, then we may make the following assumption: 

ASSN( l  l): A CAUSAL physical theory-language is given by ( 3 - s  = 
s163 or more simply we may adopt the notation following as 
equivalent: 

- s  

RMK/NTN(12): Associated with the theory-language E is a canonical 
mapping (15: s -+ s which is caused by an equivalence relation, in s that 
will also be denoted by E. Furthermore, notice that this equivalence relation 
is obtained from ~ %s The canonical mapping E gives rise to other 
canonical mappings ff(v):R --> R, and ffw): U - +  Z, using here convenient 
(and suggestive) notations. 

3.4. Fundamental Groups 

I t  is now desirable to show that the notion of 'fundamental g roup ' - - in  
the sense of  the group of homotopy classes of loops in a space- -may be 
directly drawn out of  the approach we have used, consisting of associating 
dynamical transformations (processes) with ordering operators. This 
facet of  our approach comes directly out of applying the notion of s 
equivalence to trajectories in U. 

To begin with we may depict the relationships between some of the 
notations which have been associated with the set of all events U by a 
diagram of the kind in Fig. 1. In particular let us now consider a typical 
subset Uii c U which possesses some intersecting individual trajectories; 
for example, see Fig. 2. We consider the situation in which--for  argument's 
sake-- three individual trajectories leaving zi all pass through a common 

t This assumption of a factorisation in s by the law of composition [] in s is natural 
in that it allows expression of the notion that a sequence of dynamical transformations/ 
processes may be written as a sequence of elements of s compounded with one another. 

;~ If one wishes to extend the monetary analogy, one may call any theory-language 65 
defined in this way a 'golden' or 'standard' theory language. Without trying to be 
nationalistic in any way, one may even call it, humorously, 'the goM standard'. 
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event up before they all pass through zj. In this situation it is clear that in 
terms of the theory languages s we can write: 

t;~ ~(up) = ~. i;.(up) = t;v L(up) 

Let us further assume that these three portions of the individual trajectories 
are s so that they define an equivalence class of trajectories 
from zl to up. Next, adjoin (in turn and separately) to this s 
class of trajectories the s classes of trajectories in Uij, which 
lead from up to its successors, e.g. uo(~ ~, uQ(~, uo(~ ). Then take the space of 
all s classes of trajectories in U~j which start from z~ and give 
it a topology in which neighbourhoods are defined by the s 
classes (z ,  up). (up, uo), where the bracket denotes the trajectory together 

-'2" 

' (v,.j) -' 

Figure 2. 

with its end points, and the �9 denotes composition of trajectories in the 
manner of joining paths together. By studying the definition DF(3) given 
below, it will be verified that we have constructed the universal covering 
space of Uii; hence by extension the universal covering space of U is also 
constructed. In what immediately follows the actual notation used by 
Pontryagin (1939) is adjusted to highlight the significance of the symbols 
(and notions they represent) which have been introduced in these dis- 
cussions. 

The space of events U is not simply connected owing to the presence of 
s classes, but it is easy to see that it is both locally connected 
and locally simply connected if one takes a neighbourhood of an event to 
consist of some immediate predecessors and successors together with the 
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transition maps between the events. The local pre-ordering of U gives the 
necessary validation of deformation properties. 

DF(3): Let U be a connected, locally connected, locally simply connected 
space, and let z be one of its points. Let ~ be the set of all paths of U 
which begin at z, and divide the set @' into homotopy classes, denoting 
the set so obtained by 1L [There does in fact exist a natural mapping 

of this set onto the space U: for if ~a  ~ 1I, then all the paths which 
belong to the class @'a end in the same point ua, and one writes 

ua = ~(~a)]. A topology is now introduced into 1I by defining an 
arbitrary neighbourhood 3~" of the topological space ~ in terms of a 
certain neighbourhood V of the space U, and a certain path A ~ @' 
which ends in V. Let X be an arbitrary path in V whose initial point 
coincides with the end of the path A. Let ~: = ;~ * X, and let 3 be the 
totality of all the paths homotopic to the path ~:. Denote by ~ the set 
of all classes S obtained from all possible choices of X in V. (Notice 
that ~/" does not change if A is replaced by A' E @'a, where @'a ~ ~/~.) 
The totality of all neighbourhoods of the type ~ obtained by an 
arbitrary choice of a neighbourhood V and a path ~ forms by definition 
a complete system 1/" of neighbourhoods of the space ~. The space 1~ 
with its topology ~F is called the universal covering space of U. 
[Pontrjagin, Section 46, DF(43).] 

We may also note the following property of ~,  this map being very 
similar to the dynamical ordering operator � 9  U -+ U; 

TH(1): The natural map ~:1~ -+ Uis a continuous open mapping, i.e. it is 
interior; moreover it is locally homeomorphic. ] Pontrjagin (1939), 
Section 46, TH(58). 

RMK(13): This theorem means that, locally, neighbourhoods of events in 
U correspond with (i.e. have the same topological properties as) the s 
equivalence classes of dynamical transformations from other events into 
the closer neighbourhoods. And this further shows that in a local sense we 
can safely study the properties of dynamical transformations in order to 
examine the properties of physical conditions. Notice that by Section 3.2, 
TH(8), published in Part I of this series,'~ if ~ is one to one, then it is not 
only a local homeomorphism, but a homeomorphism. We may also note 
the following important property of the universal covering space: 
TH(2): The universal covering space 11[ of a topological space U is always 

simply connected. ] Pontrjagin (1939), Section 46, TH(59). 

RMK/DF(14): A topological group G has the universal covering group (B, 
which is obtained by constructing the universal covering space ~* of the 
topological space G, taking the identity e of the group G for the fundamental 
point z of DF(3). Also there exists a natural map ~ :  E ~ G which is a 
continuous open mapping. The group multiplication operation is introduced 
into (B* in this manner: let A, B be any two elements of the set 6 " ,  ~,/z, 

t International Journal of Theoretical Physics, VoL 1, No. 2, p. 133. 
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paths in the classes A, B, respectively, both paths beginning at e e G, 
and their end being denoted a, b, respectively. Then the multiplication is 
defined by: 

~(A) = a; ~(B) = b; ~(AB) = ~(A) ~(B) 

This procedure does, in fact, make 6* into a topological group owing the 
following theorem: 
TH(3): For every topological group G there exists a simply connected 

topological group (5 which is locally isomorphic to G, and is such that 
G is isomorphic to the factor group (3//7, where / I  is a discrete normal 
subgroup of (3, and the fundamental group of G, ~(G), is isomorphic 
with the group/7. ] Pontrjagin (1939), Section 47, TH(61). 

RMK(15): We have therefore shown that it is possible to consider the group 
of physical, causal, dynamical operators ~ as having a fundamental group 
which is determined by the structure of the products of all possible inter- 
mediate processes between observed events. However, because it has not 
been proved that 'R' is discrete, it cannot be said that our analysis so far is 
compelling of acceptance; the inference is merely that 'R' is discrete if one 
accepts as plausible the notions which have been used throughout, namely 
that dynamical processes from one physical condition to another may be 
construed as paths the totality of which does always have a fundamental 
group. Notice that the fundamental group of a space lists all the possible 
equivalent ways of travelling from one point to another. Therefore one is 
forced, eventually, to consider the fundamental group of the space of 
transitions between physical conditions. The assertion of this essay is that 
the notions presented provide the most simple and natural way of under- 
standing and formulating this very problem of analysis. 

It is possible, before proceeding to further analysis of the nature of the 
fundamental group in this analysis, to make a comment, RMK(16), which 
acts as a warning. 
TH(4): Let ~ be a simply connected topological group. If a connected 

topological group ~ is locally isomorphic to ~, El is isomorphic to 
the factor group of E by a discrete subgroup of the centre of ~. ] 
Chevalley (1946), Chapter II, Section VII Scholium. 

RMK(16): If experiments (i.e. observations) indicate that a set of physical 
dynamical processes is invariant under a connected group of transforma- 
tions, then one may not immediately assume that there are not more 
complicated invariances which might be detected. For observations are of 
a local character, hence the invariance observed may not be an absolute 
invariance, but in fact a 'quotient invariance'. For example, instead of 
considering invariance under the Poincar6 group to be global property of 
quantum field theory,I" it is possible to consider that it is in fact a quotient 

"~ It is of course immediately obvious that the Poincar6 group cannot be considered as 
describing any general invariance, because it has a proper subgroup--the Lorentz 
group--which is not simply connected. General invariance must be in the form of the 
existence of a universal covering group, which is always simply connected. 
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invariance given by the factor group E/S, where E is the invariance group 
of the formalism and S is the internal symmetry group [compare Michel 
(1964)]. 
RMK(17): We may further notice a very fundamental property of the s 
equivalence approach adopted here. The universal covering space is that 
covering space of a given space which cannot be covered by any other space. 
In other words every simply connected covering space of a given space is a 
homeomorph of the universal covering space of the given space. Therefore 
1~ really does represent the simplest covering space of the space of trajec- 
tories, provided that the description of dynamics in terms of a (U,R) 
formalism is the simplest possible way of describing dynamics. It is asserted 
that this is actually the case, in view of the formulation of (U,R) in terms 
of categories presently being undertaken. 

It is now necessary to take note of the following theorem with respect to 
the normality of the subgroup of a universal covering space isomorphic to 
the fundamental group of the covered space. 

TH(5): Let G be a locally connected, locally simply connected and simply 
connected group, and let H = G be a discrete subgroup not necessarily 
normal. Then the fundamental group of the space G/H is isomorphic 
to H. ] Pontrjagin, Section 47, EX(61). 

TH(6): Every arcwise-connected topological group has an abelian funda- 
mental group. ] Hocking & Young (1960), COR(4.19). 

The first theorem admits the possibility that a topological group may 
have a non-abelian fundamental group; the second one tells us that such 
topological groups may not be arcwise-connected, i.e. that at least one 
class of elements of the group cannot be expressed as a continued product 
of infinitesimal elements starting from other elements of the group. 
RMK(18): Since the Poincar6 group is not arcwise-connected it is im- 
mediately asked whether its fundamental group is abelian or non-abelian. 

3.5. Fundamental Groups as Operators 
We have seen how a fundamental group may be ascribed to the set of 

observed events (one can also posit 'observable' events), and the reader 
may have noticed how the fundamental group--as portrayed by 'R ' - -  
appears as an operator between events. Here we note the role of the funda- 
mental group as an operator in the universal covering space of a topological 
space, following Hilton and Wylie (1960). 
DF(4): Ifp : 1~ -+ Uis a covering map of the space Uwith universal covering 

space 11 [compare DE(3), TH(1)], then a cover transformation is an 
autohomeomorphism h:11 -~ ~I such that ph =p. 

RMK(19): The cover transformations form a group H of operators on 11. 
The space may be regarded as the space ~/H generated by 11 and the 
equivalence relation that associates u and h(u) for each u E ~ and h ~ H. 
Each equivalence class is a discrete subspace of 1I and H operates without 
fixed points. 
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DF(5): Given two groups GI, G2 and a transformation 7: Gl -+ G~, 7 is said 
to be an antihomomorphism if for all g~, gj ~ GI, 7(gigJ) = 7(gj)7(gO. 
If ), is bijective 7 is called an anti-isomorphism, and one writes 
y:GI~/G2. 

TH(7): If 11 is the universal covering space of the locally connected space U, 
then the fundamental group 7r(U) of U is mapped anti-isomorphically 
onto H. l Hilton & Wylie (1960), COR(6.7.4). 

From RMK(19), TH(7) one deduces that if P, is the spacer of all dyna- 
mical processes which are physical--in the sense already mentioned--then 
the fundamental group of P, describes symmetries amongst the intermediate 
(unobserved) dynamical processes which contribute to the observed, 
physical dynamical process. We may therefore notice that: 

PR(1): The group of physical ordering operators [I, which corresponds to the 
group of physical dynamical processes, is free from all unwanted un- 
observable ordering operators, and yet its structure is determined by 
these same unobserved, intermediate, contributory processes, l 

3.6. Example of a Quotient Theory Language 
In examining the case for an algebraic formulation of quantum field 

theory, Haag and Kastler (1964) arrive at a condition that involves a 
quotient structure. They propose to use an abstract C*-algebra for what 
is here called the general theory-language s Their physical theory language 
is a representation of the abstract C*-algebra (theory-language), and 
equivalence in a physical sense is said to hold when two representations of 
the abstract C*-algebra have the same kernel. Thus physical equivalence 
of representations defined above is the analogue of language equivalence 
in the context of this paper. The kernels of the physical representations must 
be the same sub-C*-algebra, and this may be taken as the analogue of the 
sub-theory-language $. If $ ~ 0, then one may take the physical structure 
described by the external quantum numbers as the faithful representation 
(i.e. at least one such) of s and the internal quantum numbers will 
characterise the physical structure represented by $. 

4. Conclusion 

A formalisation of the heuristic and intuitive ideas about dynamical 
ordering relations, presented in Part II of this series, has been given in 
set theoretic language. By the application of the Principle of Corporate 
Agreement and use of the notion of language equivalence it has been shown 
that the simple diagrammatic means of describing the ordering of the set 

t The operator symbol ~ has been left off R, because we do not wish to overtly infer 
that ~ here must be constructed in the same way that ~ was. Rather the omission may be 
allowed to infer that the construction of ~ is a justification for the proposal that we use 
a quotient structure like [!. Likewise in PR(1), immediately following, the symbol v may 
be omitted. 
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of all events detected by all observers is both the simplest and the most 
informative that can be given. 

It  has been shown that any causal dynamical theory must have a quotient 
structure in its theory language, and that this structure is importantly 
characterised by the fundamental group of the system of dynamical 
transitions. The fundamental group not only defines the structure of the 
theory but may also be interpreted as the causal dynamical ordering relation 
and the associated causal dynamical ordering operator. The Haag-Kastler 
algebraic formulation of quantum field theory has been seen to provide an 
example of  a quotient theory language. 

4.1. Prospect 

One may hope to come closer to the conventional geometric formalisms 
of physics (in the differential sense) by exploiting all that is implied of fibre 
space theory by the introduction of the fundamental group of the system of 
dynamical transitions. Since a measurement process has been shown in 
Part I to define a pre-sheaf over the space of physical conditions, one may 
also exploit the relationships between fibre theory and sheaf theory. 
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